
Serverless Functions & Distributed ML: Challenges, Opportunities, Best Practices

Model
deployment

Training/
Learning

End-to-end ML
pipeline

Processing
ML Operations

Trigger

Processing
ML Operations

Load

Save

RedisAI's in-database operations achieve a
remarkable 82% reduction with ResNet-18

Gradient 2

Gradient 1

Average
Gradients

Gradient M

Trigger

Load

Save

Gradient 1

Gradient 2

Gradient M

Average
Gradients

Gradients Averaging within DB
7.2 seconds to add a new

peer to the Training Network

Maximum of 50.9 seconds
to detect peer failure during

the heartbeat step

Fetch dataset : Each worker fetches its dataset
partition
Compute gradient : Independent training of
workers on local batches/compute gradients
Synchronization : Gradients upload and
aggregation in shared database by workers
Model Update : Update each local model with
the aggregated gradients

gradients
accumulation

6
studies

Serverless applied on machine
learning pipeline

Hyperparameter
tuning

Data
preprocessing

AmineBarrak/Serverless-on-ML

AmineBarrak/PeerToPeerServerless

IC2E’ 23

Reduce communication overhead: Perform
ML operations within the database

16
studies

9
studies

33
studies

Secure & Fault tolerant communication
in serverless distributed training

VS.

DISTRIBUTED ML Training: A SERVERLESS
ARCHITECTURAL APPROACH

Amine Barrak
Fehmi Jaafar (Advisor)
Fabio Petrillo (Co-Advisor)

How have serverless
functions been utilized
in ML pipelines ?

How can communication
overhead be mitigated in
serverless distributed training?

How can serverless
functions be used to
speed up ML training?

How do we propose a
fully serverless ML
training architecture?

How can we secure and
ensure fault tolerance
in serverless training?

What did we learn from
comparing serverless ML
frameworks?

Serverless Functionsutilization in
Machine Learning Pipelines

Conducting a systematic mapping study on ML systems applied on serverless
architecture

IEEE Access ‘22

Accelerating ML training with serverless
functions

AmineBarrak/TrainingML_P2P_Serverless

Time improvement by
97.34% but cost 5.3 times

more than traditional
server based methods.

9
studies

Peers authentication mechanism / Asymmetric Encryption

Data redistribution of failed peer

Adding new peers

Tolerating ML Byzantine attacks

Peer failure recovery time graph

SPIRT : Framework for training ML workflow
 in serverless environments

QRS’ 23

AAAI’ 24

Serverless ML training frameworks
comparison

Preprint
TPDS 2024

VS.

Model update within DB

SPIRT FrameworkIntra-peer Scalability: parallel gradients
computation
Inter-peer Scalability: Changing number of
peers

AWS Step Functions

AWS step function for epoch orchestration

Varying Batch Sizes for Different
Number of Peers with DenseNet-
121 Model

No single point of failure: robust peer-to-
peer (P2P) architecture

Discard gradients outliers

Typical Serverless Training Workflow

SPIRT split the training workflow into
separate serverless functions:
Optimisation in RAM usage
Comparing Training time for one epoch
across serverless frameworks

Proposed solutions to Reduce
Communication Overhead
SPIRT: Within Database ML Operations.
MLLESS: Synchronise only Significant Updates.
LambdaML: Proposed ScatterReduce to reduce
workload on the AllReduce architecture.

Electronic Poster Version.

Comparative Accuracy Evaluation of
Serverless Training Frameworks

https://github.com/AmineBarrak/Serverless-on-ML
https://github.com/AmineBarrak/Serverless-on-ML
https://github.com/AmineBarrak/Serverless-on-ML

