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Abstract—The field of distributed machine learning (ML)
faces increasing demands for scalable and cost-effective training
solutions, particularly in the context of large, complex models.
Serverless computing has emerged as a promising paradigm to
address these challenges by offering dynamic scalability and
resource-efficient execution. Building upon our previous work,
which introduced the Serverless Peer Integrated for Robust
Training (SPIRT) architecture, this paper presents a comparative
analysis of several serverless distributed ML architectures. We
examine SPIRT alongside established architectures like Scat-
terReduce, AllReduce, and MLLess, focusing on key metrics
such as training time efficiency, cost-effectiveness, communication
overhead, and fault tolerance capabilities. Our findings reveal
that SPIRT provides significant improvements in reducing train-
ing times and communication overhead through strategies such as
parallel batch processing and in-database operations facilitated
by RedisAI. However, traditional architectures exhibit scalability
challenges and varying degrees of vulnerability to faults and
adversarial attacks. The cost analysis underscores the long-term
economic benefits of SPIRT despite its higher initial setup costs.

This study not only highlights the strengths and limitations of
current serverless ML architectures but also sets the stage for
future research aimed at developing new models that combine
the most effective features of existing systems.

Index Terms—Distributed Machine Learning, Peer-to-Peer
(P2P), Serverless Computing, Fault Tolerance, Robust Aggrega-
tion.

I. INTRODUCTION

The field of machine learning (ML) has experienced a
significant transformation, primarily due to the increasing
complexities and growing amounts of data associated with
modern ML models. Conventional single-machine learning
frameworks, which were previously dominant, now struggle
to meet these growing demands. In this scenario, distributed
machine learning is seen as a highly efficient approach that
utilizes a network of computational nodes to divide and
process the workload in parallel[1].

Multiple distributed ML architectures have been introduced
over the years, many of which are fundamentally based on the
structures of the Parameter Server (PS) and Peer-to-Peer (P2P)
topolgies [2]. Each of these represents a unique methodology
for orchestrating the management and distribution of tasks and
data across nodes in a distributed system, with their own set
of benefits and challenges [3], [4]. In the parameter server,
for instance, the worker nodes perform computations on their
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respective data partitions and communicate with the parameter
server (PS) to update the global model [5]. In contrast, peer-to-
peer (P2P) distributes the model parameters and computation
across all nodes in the network, eliminating the need for a
central coordinator [6].

However, independent of the topology, traditional comput-
ing models within these architectures often struggle with in-
flexible resource allocation, leading to underutilized infrastruc-
ture or resource shortages during peak demands (i.e, training).
This can escalate operational costs and hinder scalability [7].
Moreover, the intricacies of managing distributed systems for
deep learning, necessitate substantial expertise and effort. This
can cause a shift in focus away from the core aspects of
machine learning development [8].

In response to these challenges, serverless computing has
emerged as a revolutionary solution within the domain of
distributed ML architectures [9], [10], [11]. Platforms such
as Amazon Lambda[12], Google Cloud Functions[13], and
Azure Functions[14] provide dynamic scalability and a cost-
effective model. This paradigm empowers ML practitioners to
prioritize model development over infrastructure management
complexities. Subsequent research has introduced frameworks
that are proven to enhance cost reduction [15], scalability [16],
[17], and training time [18].

Even with the significant strides made by integrating server-
less computing, the field continues to grapple with two primary
challenges: (1) Database Dependency and Communication
Latency: A significant aspect of serverless architectures is
their reliance on databases for communication. This necessity
arises from the stateless nature of serverless architectures
and limitations in directly transmitting large data sizes[19],
[20]. As a result, communication latency can arise, especially
during the iterative process of model update and gradient
aggregation[20], [21]. (2) Fault Tolerance and Security
Concerns: Ensuring robust fault tolerance in distributed envi-
ronments is another significant concern in distributed Machine
Learning (ML) environments [22]. One issue is the absence
of mechanisms to authenticate new nodes joining the network
[23], [24]. Unauthenticated or malicious nodes could join
the network, potentially causing significant disruption to the
training process. Beyond the threat of unauthenticated new
nodes, even existing, trusted nodes can become compromised,
introducing malicious gradients intended to sway the model
training in harmful directions [25], [23], [26]. This risk em-
phasizes the importance of robust aggregation methods [27],
[28], [29], which can help mitigate the effect of such outliers
on the overall model’s performance.

In our prior work [30], we addressed these challenges by
presenting the Serverless Peer Integrated for Robust Training
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(SPIRT) architecture. This proposed solution, a robust peer-to-
peer (P2P) serverless ML training architecture, is characterized
by several key contributions: (i) SPIRT introduces a fully
automated ML training workflow within a P2P architecture
using orchestrated workflow coordination, e.g., AWS Step
Functions, maximizing scalability while reducing operational
complexities. (ii) Recognizing the critical role of databases
in serverless ML training systems, SPIRT incorporates a
modified RedisAI to facilitate in-database model updates.
This enhancement streamlines communication and reduces
overhead, facilitating more efficient serverless ML operations.
(iii) SPIRT architecture ensures fault tolerance by integrating
secure, new participant integration, and robust aggregation
mechanisms to establish a fault-tolerant environment.

SPIRT’s groundbreaking role in establishing the first fully
serverless peer-to-peer (P2P) architecture marks a significant
milestone, yet it represents just one facet of a rapidly evolving
domain. As various architectures emerge, they all share the
common goal of distributed ML training, with each frame-
work distinguishing itself by proposing unique communication
patterns. For instance, the LambdaML Architecture [20] intro-
duced distributed machine learning (ML) training on Function-
as-a-Service (FaaS) platforms, proposing two communication
patterns: ScatterReduce and AllReduce. In ScatterReduce,
each gradient is divided among the workers, each responsible
for aggregating the assigned portion. In AllReduce, one worker
aggregates the total, and then the consolidated results are
distributed to all workers. They implemented checkpoints to
ensure continuity, addressing the short lifespan of serverless
operations. Compared to traditional IaaS setups, LambdaML
stands out for its accelerated training speeds, though it ac-
knowledges that cost advantages are not always guaranteed.
Conversely, the MLless Architecture [15] introduced two key
features for distributed training on Function-as-a-Service plat-
forms: first, a significance filter that enables the sharing of
only significant model updates among workers; and second,
a scale-in scheduler that dynamically adjusts the number of
serverless functions based on workload. Each of these pro-
posed frameworks has significantly contributed to advancing
distributed machine learning in serverless environments. To
fully understand each framework’s unique contributions, it is
crucial to compare them through extensive experimentation at
various stages of ML training, such as synchronization, com-
munication, and aggregation. This comparison will illuminate
how each framework is tailored to enhance certain aspects of
the training process in a distributed, serverless context, thereby
advancing the overall efficacy of machine learning training in
such environments.

In this work, we extend our research beyond the initial
implementation of the Serverless Peer Integrated for Robust
Training (SPIRT) architecture to include a wider range of
serverless distributed machine learning (ML) architectures.
We aim to conduct an extensive comparative study of these
architectures to understand how serverless frameworks can
optimize and enhance distributed ML training. We provide a
replication package for this study 1.

1https://sites.google.com/view/spirt-paper/

This study provides valuable insights for practitioners in se-
lecting the most suitable serverless distributed ML architecture
for specific scenarios, based on empirical evidence. Concur-
rently, the study lays a foundational pathway for researchers,
encouraging the creation of a hybrid framework that combines
the most effective features from diverse architectures, fostering
advancements in the field of machine learning.

II. RELATED WORK

This section reviews literature on distributed machine learn-
ing and serverless computing, focusing on decentralized ML
on P2P paradigm and fault tolerance mechanisms .

A. Distributed Machine Learning Architectures

Distributed machine learning has gained prominence due
to the intense computational requirements and extensive data
in training sophisticated ML models [31], [2], [32]. Within
this context, serverless computing, with its modular, function-
based (FaaS) computational units, has emerged as a key
technology, particularly in distributed training scenarios. This
is exemplified by the work of Jiang et al. [20], who conducted
a comparative study exploring the trade-offs between FaaS-
based and IaaS-based systems in training distributed ML
models. Their findings highlight the potential of serverless
computing to accelerate certain aspects of ML training. Build-
ing on all this, a significant and growing body of research has
focused on its application in training distributed ML models
[33], [19], [34], [17], [35], [18]. Within this research, various
architectural have been proposed, each employing serverless
computing in distinctive ways to distribute computational
tasks. In some designs [15], a hierarchical structure is em-
ployed, where certain serverless workers function as supervi-
sorS. These workers are primarily responsible for overseeing
the process, making critical decisions, and coordinating the
efforts of other workers. Alternatively, other architectures [30]
adopt a more balanced approach, where all serverless workers
share equal responsibility. In these setups, tasks and decision-
making processes are distributed evenly. Moreover, there are
also architectures [20], [16] where, while maintaining a level
of equality among workers, some are assigned additional tasks
beyond the standard workload. These tasks, however, do not
include decision-making responsibilities. Instead, they might
involve more complex computations, data handling.

B. Communication and Model Updating in Serverless based
Distributed ML

In the context of distributed training with serverless ar-
chitectures, employing channels like queues and databases
is essential due to the inherent stateless nature of serverless
functions [36]. They enable the collection and dissemination
of data generated during the distributed learning process, en-
suring that the coordination and aggregation of computational
tasks can be carried out.

LambdaML[20] and SMLT [16] exemplify this approach
by utilizing a centralized database where all worker nodes
store their computed gradients. This central database forms
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the core communication hub, allowing workers to access and
utilize gradients computed by others. However, both of these
designs are generally of low efficiency due to the bandwidth
bottleneck over the central database as well as over the one
function responsible of making the aggregation of gradients of
the differnet workers. The use of ’scatterReduce’ method used
in [20] and [16] aimed to mitigate this problem and instead
of a single central function aggregating all gradients, the task
is distributed among multiple nodes. Liu et al. in their solu-
tion FuncPipe [37] tried to reduce bottleneck communication
over the functions responsible of making the aggregation by
utilizing both y utilizes both uplink and downlink bandwidth
of serverless functions

Contrastingly, MLLess [38] adopts a more composite strat-
egy, integrating both a central database and individual queues
for each worker. In this hybrid model, the central database is
employed for storing gradients and facilitating the communica-
tion of these gradients among different nodes. The individual
queues associated with each worker serve a distinct purpose
– they act as notification channels, informing each worker
about new updates and changes. To reduce overhead over the
aggregated function MLLess only send significant updates.

Differentiating from these works, our architecture uses both
queues and individual databases for each worker, rather than
relying on a central database. Our design also incorporates
gradients accumulation throw parallel gradients in order to
further reduce the communication overhead. Additionally, we
modify RedisAI [39] for serverless ML training systems that
rely on databases, introducing in-database model updates ton
eliminate the traditional fetch-process-reupload cycle.

C. Security and Robustness in Distributed ML

Fault tolerance in distributed ML is facilitated by tech-
niques like Availability Zones, retries, architectural decisions,
and checkpointing mechanisms [40], [41], [42], [19], [20].
The heartbeat technique is also used for failure detection
[43]. Several studies also propose securing communication
within distributed systems to prevent data leakage [17], [44],
[23], [45]. In addition, robust aggregation techniques such as
KRUM [27], MULTI-KRUM [27], GeoMed [28], MarMed
[28], and ZENO [29] are used to address Byzantine faults
[46]. These robust aggregations rules have been adapted to
P2P architectures in works like the BRIDGE framework [26]
and a blockchain-based solution by Xu et al. [23].

In the field of distributed machine learning, LambdaML [20]
introduces a novel fault tolerance approach within individual
workers. This system monitors execution to preemptively
address a potential 15-minute timeout. As the timeout nears,
LambdaML pauses execution, saving a checkpoint to the
storage service, which includes the latest local model param-
eters. Execution is then resumed with a new worker trigger.
Conversely, Mlless [38] enhances training robustness through a
supervisor mechanism. This supervisor automatically removes
workers whose contribution to model convergence is minimal
or negative, primarily due to escalated communication costs.

We expand on this body of work by implementing a
secure, scalable peer-to-peer communication, new participant

integration into the ML training network, and incorporating
robust aggregation mechanisms for reliable distributed ML.

III. DESIGN ARCHITECTURE OF LOGICAL PEER TO PEER
TRAINING ML

In this section, we delve into the design architecture of
a serverless, peer-to-peer machine learning training system.
The discussion encompasses a broad overview of the proposed
architecture, an in-depth examination of the core components,
and an exploration of the operational dynamics driving the
system’s overall functionality and performance.

A. Comprehensive Overview of the Proposed Architecture

Our proposed serverless P2P distributed training architec-
ture, as illustrated in Figure 1, kicks off with system initial-
ization, followed by the authentication of new peers, if any.
In this configuration, every peer in the network is uniquely
identified by the IP address and port tied to its corresponding
stateful component - a dedicated Redis database. A heartbeat
monitoring system ensures the constant availability of all
peers.

Within the system, the assigned dataset of each peer is
divided into smaller shards (batches). The peer computes gra-
dient for each shard, averages them, and stores the result in its
Redis database. These averaged gradients are then collectively
aggregated among all peers, filtering out any outliers in the
process by applying robust aggregation. The resultant set of
trusted, aggregated gradients is used to update the model
parameters. The system performs periodic checks for model
convergence i.e.,every ten epochs, assuring optimal progress
during the learning phase. Data integrity and confidentiality
are ensured through secure peer communication.

The entire process is coordinated using AWS Step Func-
tions, which seamlessly orchestrates the flow of each epoch
within the training process of each peer.

This architecture is deployed on Amazon AWS for its
unique benefits like the 15-minute timeout and 10GB RAM
from AWS Lambda [47]. Notably, comparable services on
platforms like Google Cloud, Azure, and IBM Cloud enable
possible architecture replication.

B. Deep Dive into Core Architectural Components

Following the initial overview, we will now go over each
key facet of our proposed Peer-to-Peer (P2P) serverless archi-
tecture.

1) Training Dataset Management and Partitioning: Indi-
vidual peers have the ability to pull data from multiple dis-
tributed storage systems, including Amazon S3. The specific
data each peer is responsible for is determined by its unique
rank. This data is then divided into smaller units, or shards,
to enable batch processing.

2) Leveraging Serverless Computing Across Peer Training
Tasks: The cornerstone of our architecture is serverless com-
puting, embodied by Amazon Lambda functions. Incorporated
throughout the peer training workflow—from peer authenti-
cation to model updates—it offers benefits such as isolation
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Fig. 1. Overview of the proposed Peer To Peer training based on Serverless computing

for uninterrupted operations, capacity for managing compute-
intensive tasks like gradient computations, and scalability for
workload fluctuations.

3) Training Workflow Orchestration: Due to the serverless
structure of our system, where functions operate indepen-
dently, their orchestration is crucial. To manage this, we
use AWS Step Functions, a powerful serverless workflow
service. It coordinates the entire machine learning training
process within each peer during each epoch, including tasks
like peers authentication, gradient computation and averaging,
model updates, and convergence assessment. Notably, our
architecture integrate continuous invocation of step functions
for each epoch, which effectively mitigates AWS Lambda’s
cold start delays, thereby enhancing overall performance and
minimizing latency during ML training.

4) State Management and Processing in Database: In our
architecture, we use Redis, an open-source in-memory data
store, for quick access to machine learning artifacts such as
model parameters and gradients - a key requirement for any
stateless distributed ML system.

Beyond a simple key-value store, we utilize the RedisAI
module which supports various deep learning backends, en-
abling in-database ML operations, and minimizing data trans-
fer latency. RedisAI is especially efficient at serving models
at scale and in real-time. Unique to our architecture is the
extension of RedisAI’s capabilities to directly modify model
parameters within the database, eliminating the traditional
process of external processing, our routine performs these

operations inside the database itself.
5) Synchronization between Peers: Within our proposed

architecture, achieving synchronization amongst peers is
paramount for ensuring the correctness of the distributed train-
ing process. To manage this aspect of distributed computation,
we employ the AWS Simple Queue Service (SQS).

Once a peer completes gradient computation for its data
shards and averages local gradients, it sends a notification
message to a designated synchronization queue, the “Sync
Queue”, signifying the task completion. If a peer doesn’t
respond or acknowledge within a designated timeout period,
others proceed without waiting indefinitely. The unresponsive
peer is identified as a failed node in the next epoch by our
heartbeat monitoring system.

We note that the messages inside the ”sync queue“ will be
deleted by any peer in initialisation phase.

6) Secure Communication: Safeguarding Data Integrity
and Confidentiality: Our architecture employs stringent se-
cure communication protocols to ensure data integrity and
confidentiality during inter-peer interactions, accomplished
through the RSA algorithm for asymmetric encryption, with
unique public and private keys for each peer. Beyond en-
cryption, unique digital signatures derived from private keys
authenticate sender identity and verify data integrity.

Each peer’s private key is safeguarded by encryption using
a unique key from AWS Key Management Service (KMS),
with access strictly limited to few authorized services (Lambda
functions), enhancing security against unauthorized access.
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C. Operational Dynamics of the Proposed Architecture

Within this subsection, we take a closer look on the opera-
tional dynamics that power our proposed architecture. Moving
beyond the standalone examination of the key components, to
their interactions, collaborative processes, and the mechanisms
that drive the overall system performance and functionality.

1) Peers Initialization and Authentication: Our architec-
ture relies on Amazon SQS for two main operations: peers’
initialization and new peers’ integration. Each peer has two
distinct SQS queues - the first for join requests and the second
for receiving encrypted passwords of other peers’ databases.
Every peer also maintains an AWS Key Management Service
(KMS) encryption key, securing its private key within its
database, and ensuring exclusive key access.

Peers Initialisation This phase involves the setup of indi-
vidual peers. The process below describe the peers initialisa-
tion.

1) At the onset, the admin initiates the peers, by providing
each their own KMS encryption key, URLs of their
neighboring peers’ “join requests” SQS queues, and a
unique rank. Each peer then generates private and public
keys. The public key is stored in its plain form, while
the private key is encrypted using the KMS encryption
key before storage in the respective database.

2) Each peer then generates a digital signature and broad-
casts this, along with its public key, database IP address,
port, and the URL of its “databases passwords” queue
inside the other peer’s “join requests” queue.

3) Verification ensues as each peer validates the other’s
signature

4) Upon successful verification, peers mutually exchange
their encrypted database passwords. Furthermore, they
save each other details, including their rank, into their
respective databases.

Novel peer integration In this phase, we illustrate the
process of integrating a new peer into an existing training
network. The steps are as follows:

1) The process is initiated when the admin provisions the
new peer (Peer 3) with the URLs of the “join requests”
SQS queues of existing peers and their corresponding
public keys, and their ranks. Peer 3, in response, gen-
erates a pair of public and private keys. These keys are
stored in its database, with the private key encrypted
using the designated KMS encryption key.

2) The new peer (Peer 3) generates a digital signature,
broadcasting it and its public key, database port and
IP address, URL of its “databases passwords” queue,
and rank. It sends its password, encrypted with the
recipient’s public key, via their “join request” queues.

3) Once the broadcasting phase is completed, Peer 3 waits
for validation from the existing peers. These peers un-
dertake the task of validating Peer 3’s authenticity. They
accomplish this by rigorously comparing the signature
provided by Peer 3 against the information contained in
its public key, ensuring a match.

4) After Peer 3’s successful validation, Peers 1 and 2
send back their individual signatures, and their databases

passwords encrypted with Peer 3’s public key, into Peer
3’s “databases passwords” queue. Furthermore, they in-
corporate Peer 3’s details into their respective databases.

5) Finally, Peer 3 validates the sender peers based on their
signatures and public keys. Upon successful validation,
Peer 3 records the details of Peers 1 and 2 into its own
database.

2) Model Initialisation: The model initialization phase
involves the establishment of a unified model to serve all
initialized peers. This model can be initialized with random
parameters or pre-trained ones, depending on the requirements.
The chosen model, which could be a specific ML or deep
learning model, is then stored in each peer’s Redis database
using RedisAI. This ensures a consistent starting point for
distributed learning.

3) Distributed Gradient Computation: Leveraging the
serverless concurrent abilities of AWS Lambda, we implement
a parallel gradient computation within our architecture. Each
peer partakes in this distributed process by calculating gra-
dients on assigned data batches and storing these computed
gradients in its local Redis database. To expedite the gradient
computation, data, segmented into smaller batches, is fetched
from S3 storage, and model parameters are retrieved from
Redis.

4) Averaged Gradient Computation: Once the gradients
have been computed, an embedded Lua script calculates the
gradients’ average within the Redis database environment,
capitalizing on in-database programming. This approach elim-
inates costly external data transfers. Once local averaging
is complete, peers send a completion message to the ”sync
queue“, notifying others of the task’s conclusion.

5) Heartbeat Monitoring: Our system incorporates a
’heartbeat’ mechanism designed to be triggered every epoch,
where each peer checks the operational status of other peers
databases. Peers send a signal, waiting for responses to confirm
others’ activeness. Failure to respond within a set timeframe
and a number of trials denotes a peer as ”inactive“, subse-
quently removed from the trusted peers list and added to
the ”inactive peers info“ list. This continuous health check
is vital for network integrity and uninterrupted peer-to-peer
communication.

6) Peers Synchronization: To collate the individually com-
puted average gradients from each participating peer and
derive the aggregated gradient, a specially designated Lambda
function ”synchronize“ is instantiated. This function serves as
a synchronization barrier that waits until the count of messages
in the queue equals the current number of active peers, those
determined by the preceding heartbeat check.

7) Gradient Aggregation: Once all peers are synchronized,
the gradient aggregation phase begins. Each peer fetches the
average gradients from the databases of all active peers in
the network. An aggregation function then amasses these
gradients, utilizing robust algorithms to discard outlier gra-
dients. The final aggregated gradient is then stored in each
peer’s Redis database. This approach ensures the integrity and
accuracy of our gradient aggregation process.

8) Model Update: Utilizing the in-database programming
feature of RedisAI, we directly update each peer’s model
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Fig. 2. Comparative Overview of Serverless Machine Learning Frameworks: SPIRT, MlLess, LambdaML Scatter Reduce, and LambdaML AllReduce
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parameters stored in the Redis database using the aggregate
gradient, thereby bypassing the conventional read-process-
write cycle.

9) Convergence Checking: Upon the completion of model
parameter updates, a Lambda function is intermittently called
(e.g., after every tenth iteration) to check model convergence.
This approach reduces unnecessary function calls, as signifi-
cant model changes aren’t anticipated after each iteration.

10) Update and Trigger new epoch: In our AWS Step
Function workflow, each function manages a single epoch. A
Lambda function triggers a new Step Function at each epoch’s
end to continue training. This Lambda initializes the Step
Function with the next epoch number, parallelism level for
gradient tasks, and a convergence check flag, updating it as
needed. The new function’s ARN is stored in a Redis database
for reuse.

The same Lambda function updates the inactive peer list
through a consensus approach, marking a peer as inactive only
if all nodes list it as such.

11) Fault Tolerance and Peer Data Redistribution: A
core strength of our architecture lies in its fault-tolerance
mechanisms. This resilience is primarily manifested through
our approach to handle instances of peer inactivity or failure.
When one or many peers become inactive, our dedicated
Lambda function first identifies these instances using the
consensus-based approach described previously. Once inac-
tive peers are identified, the data originally assigned to the

downed peers is segmented and distributed among the active
peers based on a predefined ranking system. Here, each peer,
according to their rank, inherits a corresponding portion of the
data from the inactive peer.

Following this data reassignment, the ”Update and Trigger
new epoch“ Lambda function adjusts the configuration of
the new Step Function to account for the change in data
distribution and the increased workload for each active peer.
This adjustment may include tuning the degree of parallelism
for gradient computation tasks to accommodate the additional
data batches.

IV. COMPARATIVE ANALYSIS OF SERVERLESS ML
FRAMEWORKS

In this section, we conduct a systematic comparison of
serverless machine learning training frameworks, specifically
SPIRT [30], MLLess [15], and the two proposed communi-
cation patterns proposed by LambdaML [20]. By illuminating
their unique architectural elements, we establish a foundation
for comprehensive analysis and comparative evaluation to
break down and elucidate their communication protocols and
interaction patterns.

A. Serverless ML Training Workflow

Training in a serverless computing environment entails
distinct characteristics due to the stateless nature of serverless
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TABLE I
COMPARATIVE ANALYSIS OF SERVERLESS TRAINING FRAMEWORK ARCHITECTURES: AN OVERVIEW OF KEY TRAINING COMPUTATIONAL STAGES

Training Stages SPIRT [30] MLLESS [15] Scatter Reduce [20] ALL Reduce [20]
Fetch Dataset 1. Fetch a worker’s minibatches. 1. Fetch a minibatch. 1. Fetch a minibatch. 1. Fetch a minibatch.
Compute
Gradients 2. Compute in parallel the gradient

of each minibatch.
2. Compute gradient of
minibatch.

2. Compute gradient of minibatch. 2. Compute gradient of
minibatch.

3. Send gradients to own database.
4. Calculate the average of com-
puted gradients within database.

Synchronisation 5. Notify the queue that the gradi-
ent is ready.

3. Store gradient in database
and send its key to other
workers’ queues.

3. Divide the gradient into chunks
for each worker.

3. Send gradient to database.

6. Poll the sync queue until the
messages count matches the num-
ber of workers.

4. Listen to the queue and
store received update keys

4. Retain own chunk, send others
to database.

4. Master worker retrieves
all gradients from the
database

7. Fetch all averaged gradients
from workers.

5. Wait until the expected
updates from supervisor ar-
rives.

5. Fetch and aggregate assigned
chunks, gathered from others.

5. Master Worker performs
the aggregation process.

8. Aggregate retrieved gradients
and save it in database.

6. Fetch and aggregate gra-
dients until all expected up-
dates are received.

6. Send the aggregated chunk to the
database.

6. Master worker sends ag-
gregated gradient to the
shared database.

7. Retrieve all aggregated chunks. 7. Fetch aggregated gradient.
8. Concatenate aggregated chunks
to assemble the full gradient.

Model Update 9. Update the model. 7. Update the model. 9. Update the model. 8. Update the model.

functions. These functions necessitate an external storage so-
lution for preserving intermediate data that must be accessible
across different workers or for storing training checkpoints
prior to the termination of a function. The following algorithm
delineates the serverless ML training workflow.

Algorithm: Typical Serverless ML Training workflow
1: Data Fetch: Each worker fetches its dataset partition.
2: Parallel Training: Independently, workers train on

local batches and compute gradients.
3: Gradient Sharing: Workers upload their computed

gradients to a shared database.
4: Gradient Collection: Workers fetch gradients from

the shared database.
5: Gradient Aggregation: Aggregate all fetched gradi-

ents to compute a global update.
6: Model Update: Update each local model with the

aggregated gradients.

B. Framework-Specific Communication Mechanisms

Serverless computing has significantly transformed dis-
tributed machine learning (ML) with innovative frameworks
like SPIRT, LambdaML, and MLLess, each uniquely ad-
dressing the complexities of serverless architectures. Figure 2
illustrates the distinct communication mechanisms employed
by these frameworks to enhance distributed ML tasks in a
serverless environment.

In SPIRT (Figure 3a), each worker is considered as a
peer. Each worker has its own database and a serverless
workflow orchestrated by aws step function to perform the
following operations: (1) each worker fetches the minibatches
assigned to it, (2) each minibatch is then utilized to compute
gradients in parallel, (3) these gradients are subsequently
stored in the worker’s own database. The process continues
with (4) the averaging of these gradients within each worker’s
database. Following this, (5) a notification is sent to the

synchronisation queue indicating the completion of gradient
averaging. Workers (6) poll the synchronization queue until
the message count aligns with the number of peers involved.
Subsequently, (7) peers retrieve the averaged gradients from
each other’s databases, (8) aggregate these averages and save
it within database, and finally, (9) proceed to update their local
models within their databases.

In MLLESS (Figure 3b), the workflow begins with (1) each
worker fetching a minibatch. Following this, (2) the workers
compute the gradient of their respective minibatches. Upon
identifying a significant update, (3) the gradient is stored in
a shared database, and its key is sent to the queues of other
workers, while simultaneously notifying the supervisor of the
update by posting in the supervisor’s queue. The next phase,
(4), involves workers continuously monitoring their queues to
accumulate the keys of received updates from other workers
and to read from supervisor the expected updates. (5) Workers
then wait until all the expected updates, as communicated
by the supervisor, have arrived. (6) They then fetch the
corresponding gradients from the database and aggregate them
once all expected updates, as indicated by the supervisor, have
been received. Finally, (7) the aggregated gradients are used
to update the model.

In ScatterReduce-LambdaML (Figure 3d), each worker
begins by (1) fetching a minibatch of the dataset to process.
They then (2) compute the gradients of this minibatch and (3)
divide the computed gradient into chunks, each intended for a
different worker. Each worker (4) keeps its respective chunk
and sending the others to a shared database. Workers then (5)
fetch and aggregate the chunks assigned to them, which have
been gathered from other workers, This aggregated chunk is
(6) sent back to the database. Each worker (7) retrieves all the
aggregated chunks from the database, (8) concatenates these
aggregated chunks to assemble the full gradient, and finally,
(9) updates the model with this complete gradient.

In AllReduce-LambdaML (Figure 3c), each worker begins
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TABLE II
COMPARATIVE ANALYSIS OF SERVERLESS MACHINE LEARNING FRAMEWORKS: FEATURE COMPARISON ACROSS MLLESS, LAMBDAML, AND SPIRT

SPIRT [30] MLLess [15] AllReduce [20] ScatterReduce [20]
Gradients Stor-
age

Each worker computes gradients and
stores them in their own designated
database.

Gradients are stored in a central
database and identified with unique
keys.(Redis Database)

Gradients are stored in a central database. (S3
bucket)

Communication
Channels

Workers employ a central queue to re-
ceive completion notifications and di-
rectly access gradients stored in other
workers’ databases.

Workers employ a single queue for
both supervisor instructions and re-
ceiving gradient keys from other
workers.

Workers transmit their in-
dividual gradients to the
central database for storage
and access the aggregated
gradient computed by the
master worker.

Workers transmit their cal-
culated gradient chunks
to the central database
and collect corresponding
chunks computed by other
workers.

Communication
Overhead
Reduction

Parallel accumulative learning and
in-database batch averaging, cou-
pled with enhanced RedisAI for in-
database model updates.

Workers accumulate local updates
and share them with other workers
only upon reaching a significance
threshold.

Scatter-reduce was proposed as a solution to the
bottleneck issue inherent in AllReduce, by decen-
tralizing the aggregation process and thus distribut-
ing the workload more evenly among workers.

Synchronization
Barrier

Workers are blocked until the cen-
tral synchronization queue’s notifica-
tion count aligns with the number of
workers.

Workers are blocked from ad-
vancing until their synchronization
queue has the expected number of
messages from the supervisor, en-
suring all gradients are computed.

Workers wait until the
master node uploads the
aggregated gradients in the
database

Workers pause proceeding
only when the number of
gradient chunks matches
the worker count

Batch Process-
ing

Each worker is assigned a dataset seg-
ment, organized into minibatches in
the cloud, leveraging parallel batch
processing.

MLLess processes batches by first
preprocessing and storing the data
as minibatches in cloud storage.
Each worker then sequentially pro-
cesses their assigned minibatches.

The dataset is preprocessed and segmented based
on the number of workers, is processed in mini-
batches by each worker using the training loader.

Fault Tolerance Worker down: training continue with
existing workers.
Recovery: involves detecting inactive
workers through heartbeat monitoring.
Active workers then redistribute the
data initially assigned to the unavail-
able peer among themselves.

Worker down: training continue
with existing workers.
Supervisor down: workers
blocked until supervisor come
back.
Recovery: None.

Worker down: Master
worker will be blocked
until the worker come
back.
Master Worker down:
workers blocked until
Master worker come back.
Recovery: None.

Worker down: All work-
ers will be blocked until
the worker come back.
Recovery: None.

Auto-Scaling A worker can be added at any point of
the training without affecting the other
workers.

None. None. None.

Security
Measures

Implemented robust aggregation tech-
niques, ensured worker authentication
upon network entry, and secured com-
munications through encryption.

None. None. None.

by (1) fetching a minibatch from the dataset. Following this,
they (2) compute the gradients of the minibatch. Once the
gradients are computed, workers (3) send these gradients to
a shared database. One of the workers will be designed as
master (usually worker with ID 1). The master worker then (4)
retrieves all the gradients from the database and (5) performs
the aggregation process to combine these gradients into a
single, unified gradient. After the aggregation, the master
worker (6) sends this aggregated gradient back to the shared
database. Subsequently, each worker (7) fetches the aggregated
gradient from the database, and finally, (8) updates their local
models with this aggregated gradient.

Exploring these frameworks in a detailed comparative study
will highlight the unique conceptual approaches they adopt for
orchestrating machine learning training processes.

C. Comparative Review of Serverless ML Frameworks

We evaluate the frameworks using a set of criteria that
highlight their distinctive operational and architectural char-
acteristics, specifically addressing the intricacies of serverless
computing and ML training, as follows:

• Gradient Storage: This criterion evaluates the strategies
utilized for the preservation and accessibility of computed
gradients within distributed machine learning systems.

• Communication Channels: This aspect evaluates the
mechanisms through which workers communicate with
each other. It looks at the types of channels used (e.g.,
queues, direct database access) and how it facilitate the
transfer and retrieval of gradients.

• Communication Overhead Reduction: This criterion
examines the strategies and techniques used to minimize
the amount of communication required between workers.

• Synchronization Barrier: This assesses the synchro-
nization mechanisms used to coordinate task progression
among distributed workers, including conditions and con-
straints like conditional waits.

• Batch processing: This describe how workers manage
data batches during training, from sequential to par-
allel processing. In serverless environments like AWS
Lambda, which use CPU-based execution [48], the paral-
lelization within Lambda functions is constrained by their
single-threaded design, resulting in sequential processing.

• Fault Tolerance: This evaluates the robustness of a
distributed system against worker or supervisor node fail-
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ures, detailing strategies for operational continuity, state
recovery methods, and resilience mechanisms that enable
the system to maintain or swiftly restore its functions.

• Auto-Scaling: This measures the system’s ability to dy-
namically adjust the number of active workers during the
training process without requiring a restart, allowing for
seamless integration or removal of workers.

• Security Measure: This criterion assesses the measures
to protect data integrity and confidentiality, including en-
cryption protocols, authentication mechanisms, and other
practices to prevent unauthorized access and breaches.

V. EVALUATION

In order to evaluate the performance of different serverless
ML training architectures, including SPIRT, we design a series
of experiments to evaluate the performance of various CNN
models across different datasets on the proposed architectures.

A. Experimental Setup

1) Datasets: We utilized two public datasets:
MNIST: The MNIST Handwritten Digit Collection [49]

consists of 60,000 handwritten digit samples, each belonging
to one of ten classes.

CIFAR: The CIFAR Image Dataset [50] encompasses
60,000 color images spanning ten distinct classes, such as
automobiles, animals, and objects. Each category contains
6,000 images that are evenly distributed.

2) Model Architectures and Hyperparameters: The experi-
ments involve three different CNN models:

MobileNet V3 Small: A lightweight CNN developed for
mobile and edge devices, it features inverted residual blocks,
linear bottlenecks, and squeeze-and-excitation modules, with
roughly 2.5 million trainable parameters [51].

MobileNet: MobileNet (MN) is a neural network model that
uses depth-wise separable convolutions to build lightweight
deep neural networks. The size of each input image is
224×224×3, and the size of model parameters is 12MB.

ResNet-18: A deep learning CNN model with approxi-
mately 11.7 million parameters, featuring 18 layers and using
”skip connections” to aid training of deeper networks [52].

ResNet-50: A more advanced deep learning CNN archi-
tecture, ResNet-50 encompasses approximately 25.6 million
parameters across 50 layers [52].

B. AWS Lambda Configuration

Several AWS Lambda functions, discussed in Section III,
were set up for the training procedure. Dependencies such
as PyTorch, NumPy, Redis, RedisAI, and sshtunnel were
necessary. Managing these dependencies posed a challenge
due to AWS Lambda’s deployment package size limit. The
unzipped files cannot exceed 250MB.

C. Dataset Division for Workers and Batches

During experiments with datasets like MNIST, the dataset
is distributed among the workers, with each receiving a subset.
Workers then split their subset into batches for processing. For

instance, if MNIST is shared among 4 workers using a batch
size of 128, each worker processes about 15,000 images across
roughly 118 batches to compute gradients.

VI. RESULTS

In order to assess the effectiveness of various serverless
ML training architectures, such as SPIRT, we design a series
of experiments to evaluate the performance of various CNN
models across different datasets on the proposed architectures.

A. Serverless Frameworks Training Time

Motivation: The motivation behind this experiment is to
delve into the intricate temporal dynamics that characterize
the various architectures. By benchmarking the duration of
the distinct ML training stages outlined in Table IV-A, we
aim to uncover the inefficiencies and inherent strengths of each
architecture. This comparative analysis can guide practitioners
in selecting the most suitable framework for their specific
needs.

Approach: To evaluate training times across serverless
architectures, we conducted a single-epoch training using 4
workers, tracking the time spent at each stage. Depending
on the architecture, the serverless lambda maximum memory
size was determined based on tests. We executed the lambda
function, which subsequently reported the maximum memory
usage observed during the operation. This allowed for a precise
assessment of the memory demands of the training process. We
trained the MobileNet model on the CIFAR dataset, providing
a basis for comparing architectural efficiency.

Results: We observed distinct performance characteristics
across the stages of fetching the dataset, computing gradients,
synchronization, and model updating.

Spirt has the advantages to speed up its epoch by paral-
lelizing the batch processing, with notably rapid dataset fetch-
ing (1.2s) and gradient computation (18.055s). To complete
one epoch, Spirt needs one synchronisation between workers
(6.03s) and one model update (0.28s).

Spirt Scatterreduce Allreduce Mlless
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Fig. 3. Training time for one epoch across serverless training frameworks,
depicted on a logarithmic scale.
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TABLE III
COST ESTIMATIONS OF ONE EPOCH TRAINING USING MOBILENET ON CIFAR WITH 4 WORKERS ACROSS VARIOUS ML TRAINING FRAMEWORKS IN

SERVERLESS COMPUTING, EMPLOYING A BATCH SIZE OF 256 TO YIELD 49 BATCHES

Framework Training Stage Time (s) RAM Cost/Worker (USD) Cost 4 Workers (USD)

SPIRT [30]

Initialisation 5.23 128 <0.0001 <0.0001
Fetch Dataset
+ Compute Gradient 15.44 3048 0.0298* 0.1193

Trigger Average Gradients 3.815 128 <0.0001 <0.0001
Synchronisation 3.273 128 <0.0001 <0.0001
Aggregation 2.759 168 <0.0001 <0.0001
Trigger Model Update 0.28 128 <0.0001 <0.0001
Total per Epoch 0.0298 0.1194

ScatterReduce [20]

Fetch Dataset 5.232
Compute Gradient 49 * 14.343
Synchronisation 49 * 1.920
Model Update 49 * 0.163
Total per Epoch 810 4880 0.0514 0.2056

AllReduce [20]

Fetch Dataset 5.349
Compute Gradient 49 * 14.382
Synchronisation 49 * 1.9516
Model Update 49 * 0.12
Total per Epoch 811.5757 4986 0.0526 0.2104

MLLEss [15]

Fetch Dataset 49 * 0.463
Compute Gradient 49 * 14.472
Synchronisation 49 * 69.425
Model Update 49 * 10.291
Total for Worker 4638 5389 0.3254 1.3016
Total for Server 4638 204 0.0123 0.0123
Total per Epoch 1.3139

*Cost per worker, multiplied by 49 for concurrent lambdas.

For the remaining frameworks—Mlless, Scatterreduce, and
Allreduce—the times were calculated based on executing 49
discrete steps for each of the training stages.

The MLLess framework exhibited the longest training epoch
duration, particularly due to the time-consuming synchroniza-
tion process. Each of the 49 steps required for synchronization
took about 69.425 seconds. This was because MLLess needed
to communicate updates with a supervisor and other workers,
verify its queue, and begin retrieving shared update keys
from other workers. It then waited to receive all the expected
updates, processed each one sequentially, fetched the update
from the database using the received key, and sent it for model
update. The model update for MLLess took 10.29 seconds for
each of the 49 steps, since every time it fetched a gradients
update from the database, it updated the model parameters.

Each worker in ScatterReduce and Allreduce are fetching
the dataset assigned for him, taking about 5 seconds. Compute
gradient were reported similar to reach almost 14 seconds for
each of the 49 steps, the synchronisation as well, is almost the
same with 1.9 seconds.

ScatterReduce and Allreduce presented similar performance
profiles, with each worker responsible for fetching its portion
of the dataset, taking about 5 seconds on average. The com-
putation of gradients was consistent across these frameworks,
with each of the 49 steps taking nearly 14 seconds. Synchro-
nization times were comparable as well, at approximately 1.9
seconds for each step.

B. Serverless Frameworks Cost analysis

Motivation: The motivation behind this experiment is to
analyze the cost implications of training distributed machine
learning models across various frameworks. We focus on
the detailed cost associated with each architectural element.
Specifically, we examine the pricing of compute instances
(e.g., AWS Lambda functions), database interactions (e.g.,
read/write operations in Redis), and communication services
(e.g., RabbitMQ). The objective is to provide a granular cost
breakdown that highlights the financial impact of architectural
decisions within serverless environments.

Approach: Building on the insights from our previous
training time experiment, we assessed the costs associated with
operating serverless functions, taking into account the allo-
cated memory RAM and execution duration. Additionally, we
evaluated the expenses related to various components, includ-
ing data storage for training datasets, database communication
channels, state management functions, and communication

Initialisation Compute gradients Synchronisation Model Update
ML Training Stages

0

1000

2000

3000

4000

5000

RA
M

 M
em

or
y 

(M
B)

SPIRT
MLless
ScatterReduce
AllReduce

Fig. 4. Memory Allocation in Serverless Computing for Training Workflows:
A Comparison between SPIRT and Other Serverless Training Frameworks.
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TABLE IV
COST ESTIMATION OF ONE EPOCH TRAINING FOR VARIOUS
ARCHITECTURAL COMPONENTS OF SERVERLESS TRAINING

FRAMEWORKS FOR MOBILENET ON CIFAR WITH 4 WORKERS,
UTILIZING A BATCH SIZE OF 256.

Framework Component Estimation Cost (USD)

SPIRT

Data Storage (S3) /
Redis Communication
Channel 0.0014 (0.17 / hour) * 4

Lambda Functions 0.1194
Step Function 0.001
Queue (RabbitMQ) 0.0002 (0.027 / hour)
Total 0.1306

ScatterReduce

Data Storage (S3) /
S3 Communication
Channel 0.14

Lambda Functions 0.2056
Total 0.3456

AllReduce

Data Storage (S3) /
S3 Communication
Channel 0.16

Lambda Functions 0.2104
Total 0.3704

MLLess

Data Storage (S3) /
Redis Communication
Channel 0.0618 (0.048 / hour)

Lambda Functions 1.3139
Queue (RabbitMQ) 0.0348 (0.027 / hour)
Total 1.4105

queues. Notably, for the SPIRT architecture, we considered
the cost implications of using an EC2 instance to host the
sophisticated Redis database.

Serverless computing usage varied across the studied frame-
works. Before executing a function, it is necessary to preset the
desired memory size for the function. For instance, in SPIRT,
a different memory size was utilized for each stage of the
training workflow. In contrast, other frameworks employed a
uniform memory allocation for the entire training workflow.
Previous work [18] revealed that gradient computation is the
most resource-intensive stage of the training workflow. Using
a single function for the entire training would necessitate
allocating a function with memory that may not be fully
utilized across different training stages. The maximum RAM
usage was determined for each framework through testing,
where each framework’s lambda function reported its peak
memory usage. Figure 4 illustrates this process.

In our evaluation, we utilized a setup comprising 4 workers
and employed the MobileNet model, trained on the CIFAR
dataset, as a benchmark to compare cost efficiency across
different architectural configurations. It’s important to note
that all cost estimations for Lambda are based on AWS’s
publicly available pricing information [53]. Additionally, we
used the AWS Pricing Calculator to precisely estimate the
costs associated with each framework [54].

Tables III and IV provide detailed cost analyses of serverless
functions and training architectures across various machine
learning frameworks, respectively. Both tables focus on the
specific scenario of training MobileNet for one epoch on the
CIFAR dataset using four workers with a batch size of 256.

Results: In the SPIRT framework, we a detailed the exe-

cution time and the memory requirements for each function
involved in the training stages. The most costly operation was
the parallel computation of gradients, priced at $0.0298 per
function. This cost was then multiplied by 49 to account for the
concurrent parallel functions actively computing the gradients,
which contributed significantly to the final recorded Lambda
function cost of $0.1194. We note that SPIRT was relying on
the database to realise several computations which explain the
low RAM overhead on the serverless computing.

In contrast, the ScatterReduce, AllReduce, and MLLess
frameworks utilized Lambda functions differently, assigning
a function to each worker for the execution of the entire
training stage. This methodology required tracking the total
training time for one epoch and the maximum memory usage
to estimate the costs. Specifically, ScatterReduce incurred a
Lambda cost of $0.2056, AllReduce was slightly higher at
$0.2104, and MLLess was more costly at $1.3139.

In the total framework cost evaluation, we did not consider
the cost of Data Storage (S3), since we are using the same
CIFAR dataset to evaluate all the frameworks.

The SPIRT architecture employs several components, each
contributing to an overall cost of $0.1306, computed based
on the total epoch execution time of 30.797 seconds. It
utilizes a modified RedisAI database on a c5.xlarge instance,
which includes 4vCPUs and 8GB of memory, costing $0.17
per hour and amounting to approximately $0.0014 for four
hours of usage. Lambda functions in the architecture cost
$0.1194. Workflow orchestration is managed through AWS
Step Functions, with 9 step transitions across 4 workers,
costing a total of $0.001. Additionally, RabbitMQ is used for
queue management, costing $0.027 per hour, with a brief usage
cost of about $0.0002.

To accurately estimate S3 costs, we calculate both the
volume of data exchanged and the number of queries involved.
In the ScatterReduce architecture with four workers, each
worker uploads 4 chunks per step (3 initial and 1 aggregated),
resulting in 4n uploads per step, where n is the number of
workers. Each worker also downloads 6 chunks per step (3
initial and 3 aggregated), leading to 6n downloads per step.
Over an epoch consisting of 49 steps, this amounts to 196n
uploads (4n×49) and 294n downloads (6n×49). Given each
chunk is approximately 3.075 MB (from a gradient divided
into four parts of 12.3 MB total), the total upload data per
epoch is approximately 602.8n MB and the download data is
approximately 904.2n MB. For four workers, this results in
2.41GB uploaded and 3.62GB downloaded, culminating in a
total data transfer of 6.03GB per epoch.

In the AllReduce architecture with four workers, the for-
mulas governing data transfers per epoch can be described as
follows: Each worker uploads its gradient to S3, and the rank
0 worker aggregates these and uploads the result, resulting in
5 uploads per step (n+1, where n is the number of workers).
Each worker, except rank 0, downloads the aggregated gradient
while rank 0 downloads the gradients from the other workers,
totaling 6 downloads per step (2 × (n − 1)). Over an epoch
of 49 steps, this translates to 245 uploads (5 × 49) and 294
downloads (6×49). Given each gradient is 12.3 MB, the total
upload data per epoch is 3013.5 MB and the download data
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Fig. 5. Time taken for calculating gradient averages within and outside the database
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is 3616.2 MB, resulting in a total data transfer of 6.63GB.
The higher total data transfer in AllReduce stems from the

fact that each data transfer involves larger amounts of data
(whole gradients), compared to ScatterReduce where the data
is broken into smaller chunks. These calculations are essential
for estimating costs related to data storage and transfer on
S3, considering both the volume of data exchanged and the
number of operations performed.

MLLess scored the highest price due to the lengthy duration
of 4638 seconds required to complete one epoch, which in
turn increased the usage of cloud services. The breakdown
shows costs for various components: no significant cost for
Data Storage (S3), moderate expenses for Lambda Functions
at $1.3139, and smaller amounts for the Redis Communica-
tion Channel and RabbitMQ Queue, at $0.0618 and $0.0348
respectively. The total accumulated cost reached $1.4105.

C. Communication Overhead Reduction

1) SPIRT Parallel Batch Processing:

Motivation: In training ML models, the learning process
involves incrementally updating the model by processing data
in batches. These batches are then processed in sequence,
requiring frequent updates to be communicated between work-
ers—a process that can introduce significant overhead.

Our proposed methodology, however, takes a different path.
After distributing the initial dataset among workers, we further
split these segments into minibatches. The key difference
lies in processing these mini-batches in parallel within each
worker. Rather than communicating updates after processing
each mini-batch, we aggregate the gradients from all mini-
batches and communicate these accumulated updates only
once all parallel processing is complete.

TABLE V
COMPARATIVE ANALYSIS OF TIME AND COST WITH SEQUENTIAL VS

PARALLEL BATCH PROCESSING

Batch size /
# of batches

Time (sec) Cost (USD)
Sequential Parallel Sequential Parallel

64 / 235 394.8 10.5 0.01017 0.05435
128 / 118 330.4 12.9 0.00851 0.03451
512 / 30 278.4 28.1 0.00717 0.03069
1024 / 15 258 47.8 0.00665 0.03567

Approach: In previous work [18], we evaluated the perfor-
mance and cost-efficiency of training the VGG11 model on
the MNIST dataset using two distinct computational architec-
tures. The first architecture employs a traditional sequential
approach, where the entire training process is conducted on a
single base instance, relying on sequential processing. The sec-
ond architecture adopts a parallel, serverless-based approach,
leveraging distributed batch processing. In the cost comparison
analysis, the estimated cost per worker was calculated as
follows:

Cost per workerparallel = [Lambda Cost × Num of batches

+ Trigger Instance Cost]
× Computation Time (1)

Cost per workersequential = Instance Cost × Computation Time
(2)

Results: Our results in Table V highlight the speed ad-
vantage of serverless parallel processing. For instance, with a
batch size of 64, the serverless approach curtailed computation
time from 394,8 seconds (as seen in the single-machine
approach) to a mere 10,5 seconds. This significant reduction
in computation time persisted across all batch sizes. However,
this efficiency comes at a slightly higher cost, with the
serverless approach incurring $0.05435 per peer for the same
batch size, compared to $0.01017 per peer in the traditional
model.

2) SPIRT within Database Operations:
Motivation: As we delve deeper into the intricate world of dis-
tributed serverless environments, characterized by numerous
autonomous and stateless services, the challenges associated
with frequent database retrieval loads during training phases
emerge. While works such as previous work [18], LambdaML
[20], SMLT [16], and MLLess [38] utilize a database as
a communication channel, storing and retrieving model pa-
rameters as necessary, the exploration of the communication
overhead these operations create remains largely unexplored.
Such conditions often precipitate a significant increase in com-
munication overhead, consequently undermining the overall
training performance. However, within our unique architec-
tural framework, we incorporate a customized Redis. This
component allows us to perform average and update operations
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Fig. 7. Comparison of communication times between scatter reduces, and all
reduce patterns as a function of the number of workers for 1 training step.

directly within Redis. Through this investigation, we aim to
shed light on how our approach can reduce communication
overhead and subsequently enhance training performance.

Approach: In our experiment, we first explore the commu-
nication overhead gains that can be realized by conducting
model updates directly within RedisAI. Following this, we
delve into the benefits of calculating gradient averages within
Redis. For a comprehensive evaluation that considers the
impact of model size on the overhead, we will use two
distinct models - MobileNetV3 Small and ResNet18 - and
run these models on the MNIST dataset. The insights from
these tests will then be compared with the traditional method
of iterative fetch-update-store operations, typically used with
standard Redis, as outlined in other serverless training ML
frameworks.

Results: An in-depth analysis of the experimental results
provides persuasive evidence of the significant efficiency im-
provements facilitated by in-database operations, as depicted
in Figures 5 and 6.

Figure 5 concisely illustrates the substantial reduction in
time for gradient averaging calculations within the database
for both the MobileNetV3 Small and the ResNet-18 models.
As the plot underscores, the in-database approach results in a
reduction of overall average computation time across various
batch sizes. The MobileNetV3 Small model, for example,
experiences an impressive decrease in computation time from
135.29 seconds outside the database to 78.52 seconds within,
for a batch size of 64. The gradients averaging time contin-
ues to escalate as the batch size increases, with the largest
batch size of 1024 resulting in a striking 82% improvement,
requiring only 5.4 seconds for in-database computations.

A similar pattern is observed with the larger ResNet-18
model, where gradients averaging computations conducted
within the database halved the processing time to 37.41
seconds, a stark reduction from the 67.32 seconds required
when computed outside the database, for the batch size of
1024. This trend equates to a remarkable 44.43% improvement
in processing efficiency, proving that our approach’s benefits
are applicable even for larger, more demanding models.

Figure 6 delves into the time taken for model updates
within and outside the database. It illustrates a decrease in
model update times when processed within the database.
MobileNetV3 Small model updates reached an 82% reduction,
shrinking from 3.49 seconds outside the database to a mere
0.64 seconds within. Likewise, ResNet-18 updates experienced

an approximately 83% improvement, with update times reduc-
ing from 27.5 seconds to 4.8 seconds.

3) LambdaML ScatterReduce Vs ALLReduce:

Motivation: In LambdaML’s study [20], authors explored
the impact of communication patterns between scatter reduce
and all reduce. Their evaluation was conducted with 10
workers on two models, MobileNet and ResNet, demonstrating
that as the model size increases, scatter reduce becomes
faster because communication becomes heavier and the single
reducer (i.e., aggregator) in AllReduce becomes a bottleneck.
However, the number of workers can significantly impact
communication, as this number determines how many chunks
are communicated over the network in ScatterReduce ap-
proach. Varying the number of workers will provide insights
into when each framework —scatter reduce or all reduce—
performs optimally. Approach: We replicated LambdaML’s
communication patterns experiment by testing MobileNet and
ResNet-50 models on the CIFAR dataset, adjusting the worker
count from 4 to 16 in 4-worker increments.

Result: As illustrated in Figure 7, the communication time
for the ResNet50 model, which has a significant parameter
footprint of approximately 89MB, displayed a linear increase
with the AllReduce strategy as more workers were introduced.
This time escalated from roughly 7.05 seconds with 4 workers
to 21.88 seconds at 16 workers, highlighting a scalability
bottleneck, likely due to the centralized aggregation process.
Conversely, the ScatterReduce strategy, by distributing the
aggregation process more effectively, managed to maintain
lower communication times, with the peak reaching only about
8.36 seconds with 16 workers. For the smaller MobileNet
model, about 12MB in size, AllReduce demonstrated better
scalability at higher worker counts, maintaining a lower com-
munication time of 4.77 seconds with 16 workers, compared
to ScatterReduce’s 6.47 seconds.

4) MLLEss Significant Updates:
Motivation: The Significant Updates Filter introduces an effi-
cient strategy for managing communication while maintaining
accuracy in distributed learning systems. Instead of trans-
mitting every minor update to the model parameters across
workers, this approach advocates for aggregating these updates
locally until they collectively reach a significant level based
on a predefined threshold. Once this threshold is exceeded,
the accumulated history of insignificant updates is packed
into a single transmission, reducing the overall communication
burden.

Approach: The MLLess [15] method for significant update
calculation was initially designed for lightweight ML models
like sparse logistic regression and matrix factorization. We
extended MLLess to support deep learning models, enhancing
its applicability across various scenarios. This expansion ad-
dresses the substantial challenge posed by the vast number of
parameters in deep learning models compared to lightweight
ML models. To tackle this, we leveraged tensor’s norm in
our filter implementation to provide a singular value that
captures the overall magnitude of the model. In this case, the
significant update is computed by accumulation of gradient
norm variation across the model parameters over the training
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steps until the ratio exceeds a predefined threshold.
Formally, the refined, significant update criterion for a deep

learning model with parameters Θ. can be represented by the
following equation:

t∑
t′

(
∥
∑t

t′ ∇Θ∥
∥Θ∥

)
> threshold

where:
• t denotes the current step of the model and t′ is the step

number of the last propagation time,
• ∥ · ∥ denotes the norm (e.g., the Euclidean norm) of a

vector.
•
∑t

t′ ∇Θ represents the accumulated gradients of the
parameters from step t′ to step t.

• The threshold is a predefined value that determines the
significance of an update.

We note that higher threshold decreases update frequency
but may miss minor updates, while a lower threshold increases
frequency and overhead to catch smaller updates.

Results: As illustrated in Figure 8, the implementation
of a significance filter within our experimental framework
has improved the convergence rates over traditional training
methods. Utilizing this filter, convergence was achieved in a
significantly reduced time frame of 8667 seconds, in stark
contrast to the 113379 seconds necessitated by conventional
training approaches. This achieved a 13-fold improvement in
the rate of training convergence, significantly reducing the time
required to reach optimal model performance.

D. Fault Tolerance and Auto-scaling

Motivation: In the dynamic realm of distributed machine
learning (ML) peer-to-peer training, disruptions, such as peer
failures, new peers joining, and potential Byzantine behaviors,
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Fig. 9. Recovery Time when a Peer Fails

are inevitable, and if not effectively managed, can impact
the reliability and performance of the ML training. This
provides the impetus for our experiment, which is meticulously
designed to evaluate the robustness, scalability, and fault toler-
ance of a serverless, peer-to-peer ML training architecture. In
this architecture, peers are carefully identified to form a secure
training network, and its capacity to handle peer failures,
seamlessly integrate new peers, and resist Byzantine attacks
will be critically evaluated to ensure long-running distributed
ML training sessions can continue to deliver accurate results
amidst these disruptions.

Approach: In our experimental approach, we center on the
evaluation of three crucial aspects using the Mobilenet V3
Small model trained on the MNIST dataset: peer failures, the
addition of new peers, and Byzantine attacks.

We initiate with the simulation of peer failures where we
begin training with four peers, each processing 15 compute
gradients. A peer failure is then artificially induced, leading
us to measure the time taken by the remaining peers to identify
the failure. In response to this failure, these remaining peers
incorporate the data of the failed peer into their following
epochs, augmenting the compute gradients to 20. This sim-
ulation aids in testing the system’s resilience and ability to
adapt in response to computational loss during peer failures.

To assess the system’s scalability, we execute the addition
of new peers scenario where a new peer is introduced into
the network. We proceed to calculate the time taken by the
existing peers to recognize and integrate this newcomer into
the ongoing training process.

Lastly, our approach includes countering potential Byzan-
tine attacks using robust aggregation algorithms, Zeno and
Meamed. Zeno [29] ensures resilience by using a validation
set to score and exclude any potentially adversarial local up-
dates. The medians-based approach, or Meamed [28], combats
Byzantine attacks by creating a vector that minimizes the
overall distance to all local updates, thereby mitigating the
influence of adversarial elements. By simulating adversarial
scenarios of one malicious peer, such as a sign flipping
attack [55] where the malicious peer inverts and amplifies its
local gradient, and a noise attack [56] where the malicious
peer introduces Gaussian noise to its local updates, we track
the training progression to convergence. This comprehensive
approach enables us to gauge the architecture’s resilience and
robustness against adversarial behavior.

results:
1) Peer Failure: The flow of the experiment are depicted in

Figure 9 for a more visual understanding. Initially, we began
with four peers, each designed to process 15 batches per epoch.
The first epoch proceeded unimpeded, with the total training
time recorded at 52.6 seconds.

A simulated peer failure was introduced at the beginning of
the second epoch, immediately after a health check had vali-
dated the ’failed’ peer as operational. This timing extended the
detection period. Nonetheless, the remaining peers recognized
the failed peer within the ongoing epoch, taking a total of 50.9
seconds to align with the next epoch’s heartbeat step.

Post this single-peer-level detection, the remaining peers
reached a consensus on the failed peer within 9.66 seconds.
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Fig. 10. Evaluation of network accuracy using Averaging, Zeno, and Meamed aggregation methods under conditions: (a) Normal training with no attack, (b)
Training under sign flip attack, and (c) Training amidst a noise attack, where random Gaussian noise is added to local updates.

This aggregated the total detection time to 61.56s seconds of
the failed peer. we note that, despite the deferred detection of
the simulated failure in the third epoch, the training process
was not interrupted, thus maintaining the progression towards
model convergence. Upon consensus on the peer failure,
the recovery process was triggered. This involved creating
a new AWS Step Function to redistribute the failed peer’s
computational workload, which increased the remaining peers’
load from 15 to 20 batches per epoch. The complete recovery
process, encapsulating the creation, deployment, and database
entry of the new AWS Step Function, required an extra
1.94 seconds. After recovery, the remaining peers continued
training in the 4th epoch with an adjusted workload to account
for the lost peer. By the end of the fourth epoch, the total
training time post-recovery was registered as 55,06 seconds.

Our analysis shows a slight increase in total training time
from 52.6 to 55.06 seconds, as the system transitions from
four to three peers. This can be attributed to the increased
number of gradients being averaged due to the redistribution
of the failed peer’s workload.

2) Adding a new peer: We found that in the scenario of
adding a new peer, it took approximately 7.2 seconds for the
existing three peers to recognize and integrate the new peer
into their list of trusted peers.

3) Tolerating Byzantine attacks: The adoption of Meamed
and Zeno aggregation algorithms introduced a computational
overhead, leading to an approximate increase of 8.2 and 5.9
times in computational time, respectively, in contrast to the
average aggregation method.

In a scenario without adversarial attacks, all three aggre-
gation methods – Averaging, Zeno, and Meamed – achieved
an accuracy above 90% within about 100 epochs. During a
sign flip attack, the robust aggregations, Zeno and Meamed,
managed to converge to almost 85%, while the normal aver-
aging method did not. In a noise attack scenario, both Zeno
and Meamed converged above 90% after nearly 90 epochs,
but the normal averaging method remained divergent.

E. Performance Evaluation of Training Accuracy
Motivation: After exploring the training durations and

studying the cost implications of various serverless frame-
works, it is important to evaluate the accuracy to understand
the trade-offs between speed, expense, and model perfor-
mance. This step ensures a balanced assessment, highlighting

frameworks that offer the best combination of efficiency, cost-
effectiveness, and high-quality results.

Approach: In our experiment aimed at comparing the
accuracy of machine learning training in different serverless
environments, we tailored the data processing approach to
align with the operational characteristics of each framework.
For MLless and SPIRIT, we divided the dataset into 196
batches, with each of the four workers directly processing 49
batches to complete a single epoch. In contrast, for AllReduce
and Scatterduce, the dataset was divided based only on the
number of workers. Each worker then acted as a dataloader,
processing the dataset batch by batch. To detect convergence,
we utilized the method of early stopping.

Results: The analysis of serverless machine learning frame-
works reveals varied convergence patterns: SPIRT converges
the quickest, achieving an accuracy of 83.2% within ap-
proximately 61.96 minutes. ScatterReduce, in contrast, begins
its convergence process after 1,652.49 minutes, ultimately
reaching an accuracy of 82.1%, which suggests a slower
and steadier learning trajectory. MLless Significant records a
lower accuracy of 83.48%, but it takes significantly longer to
converge, approximately 189.68 minutes, indicating potential
inefficiencies or data reporting anomalies. Lastly, AllReduce
starts converging after 1,367.01 minutes and achieves an
accuracy of 85.05%, outperforming ScatterReduce in both
speed and accuracy.
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Fig. 11. Comparative Accuracy Evaluation of Serverless Training Frameworks
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VII. DISCUSSIONS

This section provides an analysis of the findings from
our comparative study of serverless machine learning (ML)
training frameworks. We discuss the implications of these
findings for the field of serverless ML training and explore
potential avenues for future research.

A. Serverless Frameworks: Training Time

Our comparative analysis of four serverless archi-
tectures—SPIRT, ScatterReduce, ALLReduce, and ML-
Less—reveals varied training times.

MLLess faces substantial delays during synchronization and
aggregation, attributed to its queue-based communication. It
uses complex tasks, such as workers scaling down based on
predictive models and planning when training can be stopped.
This suggests a need for optimization in queue management
and task coordination. ScatterReduce and ALLReduce show
balanced performance but are affected by synchronization
overhead as the number of workers increases, indicating
scalability limits in their current synchronization methods.
SPIRT successfully reduces training times by leveraging its
streamlined parallel batch processing to accelerate gradient
computations and dataset retrieval. This makes SPIRT partic-
ularly suitable for low-latency applications.

B. Serverless Frameworks: Cost Implication

Cost saving is one of the main reasons to use serverless
computing, allowing you to pay only for what you execute.

The multi-database architectural design of Spirit, although
typically more expensive than other frameworks, achieves cost
reduction by minimizing training time and dividing the ma-
chine learning training workflow stage into separate serverless
functions, allocating resources exclusively to each function.
This contrasts with other frameworks that commonly use a
single serverless function with continuous memory allocation
throughout the training workflow.

Adapting SPIRT to utilize a single database may result
in cost savings and architectural simplification; however, this
would be accompanied by a decrease in fault tolerance. This
trade-off must be carefully considered, especially in applica-
tions where reliability is paramount.

C. Serverless Frameworks: Communication Overhead

Each framework has proposed a method to reduce com-
munication overhead. The SPIRT Parallel Batch Processing
technique enhances communication by conducting parallel
minibatch processing within each worker and then consoli-
dating these updates into a single communication round. Ad-
ditionally, SPIRT’s RedisAI integration boosts communication
for serverless machine learning tasks that often interact with
databases due to their stateless nature.

LambdaML’s ScatterReduce vs. ALLReduce communica-
tion patterns exhibit varying performance based on model size
and worker count. ScatterReduce excels in handling larger
models by efficiently managing heavy communication loads,
thus outperforming ALLReduce regardless of the number of

workers and avoiding bottlenecks. In contrast, for smaller
models with fewer workers, both methods are equally effec-
tive. However, as the number of workers increases, ALLRe-
duce gains due to its synchronized updating mechanism.

MLLess’s significant updates filter employs a strategy to
manage communication overhead between workers. It aggre-
gates insignificant updates locally and only transmits signif-
icant updates once they surpass a predefined threshold. This
approach effectively reduces communication load and makes
the overall training faster.

D. Security and Fault Tolerance in ML Architectures

The fault tolerance capabilities were taken into consider-
ation by the different frameworks, each with varying levels
of severity. For example, in the MLLess framework, training
can continue with existing workers even if one worker goes
down, while a supervisor’s failure blocks the workers until
the supervisor returns, with no recovery options provided.
Similar scenarios are seen in the AllReduce and ScatteReduce
frameworks, where the entire system is blocked until the
downed worker or master worker returns. Conversely, the
SPIRT framework allows training to continue with existing
workers and involves active detection and redistribution of data
among workers when a peer is inactive.

SPIRT has adopted security measures that include cryp-
tographic mechanisms to ensure data integrity, authenticity,
and confidentiality. To prevent model deviation that can be
triggered by an intruder, SPIRT employs robust aggregation
techniques that securely consolidate gradients from multiple
workers. While this robust aggregation process may extend the
aggregation time, its capacity to safeguard against Byzantine
attacks and guarantee model convergence is invaluable.

E. Lessons Learned: Serverless Computing for Training ML

Serverless computing is typically chosen for lightweight,
event-triggered functions and parallel processing. It han-
dles high demand by running concurrent functions, enabling
dynamic scaling without server infrastructure management.
Furthermore, its pay-as-you-go pricing model reduces the
complexities of server-side operations. However, serverless
computing has inherent limitations, including restrictions on
package size, limited execution times, and stateless nature.
These constraints necessitate reliance on external databases
for saving results and managing communication between
functions, making serverless less ideal for complex tasks.
To effectively use serverless for complex operations, such as
training machine learning, task logic must be divided to meet
these functional constraints. Most serverless machine learning
frameworks, such as MLLess and LambdaML, operate by
running training within these functions and saving the status
before timeout to trigger subsequent functions. Our approach
with SPIRT, however, involves splitting the training workflow
stages into manageable serverless functions. This method
allowed us to parallelize gradient computations and integrate
machine learning operations directly within the database. As
a result, SPIRT emerged as the fastest and most cost-effective
framework.
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VIII. CONCLUSION

In this study, we present the Serverless Peer Integrated
for Robust Training (SPIRT), a serverless machine learning
(ML) architecture, and conduct an extensive evaluation of
various serverless distributed ML architectures, assessing their
efficiency in training times, cost management, communication
overhead, and resilience in fault tolerance and security. The
insights derived from this comparative study are invaluable
for practitioners and researchers aiming to optimize ML train-
ing processes within serverless environments. Our findings
delineate clear distinctions among the analyzed architectures,
each presenting unique benefits and challenges. Among the
architectures assessed, SPIRT architecture was notably supe-
rior in reducing training times and communication overhead
through parallel batch processing and in-database operations
using RedisAI.

In contrast, architectures like AllReduce faced scalability
challenges with increasing worker counts, particularly under
the load of large model parameters, revealing potential bot-
tlenecks in their centralized aggregation processes. MLLess,
while innovative in its approach to minimize communication
overhead through a significant updates filter, exhibited longer
training times and higher costs due to intensive data interac-
tions. Our cost analysis revealed that despite SPIRT’s higher
setup costs, its efficient resource management translated into
long-term savings. Furthermore, SPIRT demonstrated robust
fault tolerance and security features, effectively mitigating
risks associated with Byzantine attacks and peer failures.

In our future research, we plan to explore the impact of
memory allocations on the performance and cost-efficiency of
ML training serverless functions. Our goal is to determine the
most cost-effective memory settings that still deliver optimal
performance. By systematically adjusting memory allocations
and varying batch sizes, we aim to find a balance where the
increase in computational speed and training efficiency offsets
the cost.

REFERENCES

[1] B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and
C. Jermaine, “Distributed learning of fully connected neural networks
using independent subnet training,” Proc. VLDB Endow., vol. 15, no. 8,
p. 1581–1590, apr 2022. [Online]. Available: https://doi.org/10.14778/
3529337.3529343

[2] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” Acm
computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

[3] S. Alqahtani and M. Demirbas, “Performance analysis and com-
parison of distributed machine learning systems,” arXiv preprint
arXiv:1909.02061, 2019.

[4] T. Sun, D. Li, and B. Wang, “Decentralized federated averaging,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[5] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,
“Parameter server for distributed machine learning,” in Big learning
NIPS workshop, vol. 6, no. 2, 2013.
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