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| wth is dr|V|r)g higher energy demands in smart environments Algorithm Description Implementation
like buildings and cities. ﬁ o Vs based o .
: : : . : : . arges s based on arrival, without ;  simple
Integratlng EV Chargmg with other loT devices (e°g°r HVAC, Ilghtmg) Baseline (None@ adapting to demand changes or priorities. time-based allocation.
Increases the risk of
is crucial for balancing loads and Model Predictive Predicts energy demand using a control Lrgll?/leesmir;)tteir?\izav'\cl;;: at eacf;.
. . - Control (MPC) . horizon; allocates energy based on forecasts. _.
Mmaintaining stability. time step.
. : : . .. Built with ; adapts to
NOE Adaptive MPC Dyr?am|cally adjusts control a.nd. .predlctlon fluctuations  with  flexible
2~ (AMPC) ~oN horizons based on demand variability. )
. 0By control horizons.
Particle Swarm Models each charging spot as a ‘particle’ and fBNCIMEiEe) Tl ’
We developed for smart Optimization . velv find sINg Ip Illo ; adjusts particle positions
-~ o » iteratively finds optimal energy allocation. based on best solutions.
buildings to optimize energy use. =y s (PSO) &<
It ces energy flows across devices like EV chargers, HVAC, . Built with . defines
e . Uses fuzzy sets and rules to handle varying : :
d lishting usi J d al +h Fuzzy Logic (FL) EV demand and data inputs membership functions for
and lighting using advanced algorithms. % PUts. balanced energy allocation.
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SOEMS-IloT (Software-Optimized Energy
Management System for loT) controls
energy flow across loT devices, including
EV chargers and building devices.
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Collect Data: Central chupy Spot: If a spot is
available, the EV moves
system gathers all data

for processing. into the charging position.
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~__* SOEMS-loT: Coordinates real-time  energy T 6
'. ) d iStri bUtiOn. R Distribute Energy: — I\ s v e )
Allocate energy to each O %0

device

~ ° Data Collection: Tracks usage and EV charging
(@ status (such as battery levels, charging rates and
~ spot availability) for adjustments.
i+ Control Algorithms: MPC, AMPC, PSO, FL optimize
energy distribution dynamically.
Orchestration Controller: Applies optimization to
balance supply and demand.

From Spot: Send priority,
---------- battery status, and !
required energy : Check Spot Availability:

: Upon arrival, EVs check for
available charging spots.

From Energy Source:
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ueue Up: If no spots
required energy L= L= . P P

LJI are available, the EV
joins the waiting line.

EXAMPLE

. olll o4
. 9

Simulation runs from midnight to midday. . We evaluated the performance of different algorithms across three demand scenarios

EV charging station has one Level 1 spot (1-2 kWh) and —Light, Mediu.m, and Heavy. - : : :
m two Level 3 spots (30-50 kWh). €s iInclude average waiting time, charging time, number of EVs charged, and

. .
=
M °1° h C O u a I O I e
L )
B ] e PR s O s O e [ e N ea powe r aval a | | y I S re l IC e r O Iﬂﬂ O I I l I I l I I
Car ID: Desired Level: |Level3 v | Arrival (each 15min): 6 Battery %) 20  Capacity Gw): 150  Min (w): 35 Max (w): 4 | ,
Car ID: Desired Level: [Level3 | Arival (each 15min): 8 Battery %) 15 Capacity (kw): 100  Min (kw): 30 Max (kw): 40 /
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Car ID: 4 Desired Level: |Level3 ~| Arrival (each 15min): 20 Battery (%): 2 Capacity (w): 200 Min (kw): 40 Max (kw): 50 W e
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e = PSO minimized waiting time under light All algorithms performed similarly in terms
F TTESE and medium demand, while AMPC of the number of EVs charged, but FL
. So= excelled in heavy demand, reducing charges the most across all demand
SRS R EEE SRR ER R mee waiting time by 30%. scenarios, especially under heavy demand.
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""""""" MPC and AMPC show stable average p| demonstrated the lowest computation
charging times, but are generally longer o executing up to 80-92% faster than
. : . . ‘ than FL and shorter than PSO in higher oiher methods.
EVs start charging based on arrival, leading MPC dynamically adjusts power demand.
to delays during peak demand. distribution as EVs arrive, minimizing

Example: EV 3 arrives at 2200 AM but waits delays.

until 4:00 AM to charge due to a lack of Example: EV 3 arrives at 2200 AM and

dynamic power redistribution. starts charging immediately by reallocating

EV 4 arrives at 5:00 AM but waits until power from other vehicles.

6:00 AM despite an available charging EV 4 arrives at 5:00 AM and starts charging

spot, due to lack of power availability. right away, as MPC optimizes the |
distribution of available power. T oy e Sy s v e By e et e e ey sevetee s Ao e e s s
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PSO minimized waiting time but struggled with longer charging time
during heavy demand.

FL offered the shortest charging time and lowest computational
costs, ideal for quick charging scenarios.

Both MPC and AMPC balanced charging performance, but increased
computational demands.

Utilized a custom-built simulator to evaluate control algorithms for
optimizing energy distribution under different demand scenarios.
AMPC showed superior performance in high-demand scenarios,
reducing waiting time while maintaining charging efficiency.



