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Algorithm Description Implementation

Baseline (None) Charges EVs based on arrival, without
adapting to demand changes or priorities.

No optimization; simple
time-based allocation.

Model Predictive
Control (MPC)

Predicts energy demand using a control
horizon; allocates energy based on forecasts.

Implemented with CVXPY;
solves optimization at each
time step.

Adaptive MPC
(AMPC)

Dynamically adjusts control and prediction
horizons based on demand variability.

Built with CVXPY; adapts to
fluctuations with flexible
control horizons.

Particle Swarm
Optimization

(PSO)

Models each charging spot as a 'particle' and
iteratively finds optimal energy allocation.

Implemented with PySwarm;
adjusts particle positions
based on best solutions.

Fuzzy Logic (FL) Uses fuzzy sets and rules to handle varying
EV demand and data inputs.

Built with skfuzzy; defines
membership functions for
balanced energy allocation.
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Statement 
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Scenario

Experiment
Results

Conclusion

Waiting Time:
PSO minimized waiting time under light
and medium demand, while AMPC
excelled in heavy demand, reducing
waiting time by 30%.

Charging Time:
MPC and AMPC show stable average
charging times, but are generally longer
than FL and shorter than PSO in higher
demand.

Number of EVs Charged:
All algorithms performed similarly in terms
of the number of EVs charged, but FL
charges the most across all demand
scenarios, especially under heavy demand.

Computation Time:
FL demonstrated the lowest computation
time, executing up to 80-92% faster than
other methods.

Simulation runs from midnight to midday.
EV charging station has one Level 1 spot (1-2 kWh) and
two Level 3 spots (30-50 kWh).
Peak power availability is reduced from 100 kW to 80 kW
between 6:00 AM and 10:00 AM.

Software-Driven Adaptive Energy Management for IoT-
Enabled Smart Buildings

IoT growth is driving higher energy demands in smart environments
like buildings and cities.
Integrating EV charging with other IoT devices (e.g., HVAC, lighting)
increases the risk of grid overload.
Real-time energy management is crucial for balancing loads and
maintaining stability.

We developed a software-driven IoT orchestration tool for smart
buildings to optimize energy use.
It coordinates energy flows across devices like EV chargers, HVAC,
and lighting using advanced algorithms.

Key Components:
SOEMS-IoT: Coordinates real-time energy
distribution.
Data Collection: Tracks usage and EV charging
status (such as  battery levels, charging rates and
spot availability) for adjustments.
Control Algorithms: MPC, AMPC, PSO, FL optimize
energy distribution dynamically.
Orchestration Controller: Applies optimization to
balance supply and demand.

Overview: 
SOEMS-IoT (Software-Optimized  Energy

Management System for IoT) controls
energy flow across IoT devices, including

EV chargers and building devices.

Without Orchestration (None):
EVs start charging based on arrival, leading
to delays during peak demand.
Example: EV 3 arrives at 2:00 AM but waits
until 4:00 AM to charge due to a lack of
dynamic power redistribution.
EV 4 arrives at 5:00 AM but waits until
6:00 AM despite an available charging
spot, due to lack of power availability.

With Model Predictive Control (MPC):
MPC dynamically adjusts power
distribution as EVs arrive, minimizing
delays.
Example: EV 3 arrives at 2:00 AM and
starts charging immediately by reallocating
power from other vehicles.
EV 4 arrives at 5:00 AM and starts charging
right away, as MPC optimizes the
distribution of available power.

We evaluated the performance of different algorithms across three demand scenarios
—Light, Medium, and Heavy.
Key metrics include average waiting time, charging time, number of EVs charged, and
computation time.

PSO minimized waiting time but struggled with longer charging time
during heavy demand.
FL offered the shortest charging time and lowest computational
costs, ideal for quick charging scenarios.
Both MPC and AMPC balanced charging performance, but increased
computational demands. 

Utilized a custom-built simulator to evaluate control algorithms for
optimizing energy distribution under different demand scenarios.
AMPC showed superior performance in high-demand scenarios,
reducing waiting time while maintaining charging efficiency.

Aycha Abid - aycha.abid@ept.ucar.tn, Amine Barrak - aminebarrak@oakland.edu

Level 3

Level 2

Level 1

From Building’s Device: 
Send priority, and
required energy

From Energy Source: 
Send available power

Check Spot Availability: 
Upon arrival, EVs check for
available charging spots.

Distribute Energy: 
Allocate energy to each
device

Collect Data: Central 
system gathers all data
for processing.

Select Algorithm: 
Choose the optimal
algorithm for energy
distribution

From Spot: Send priority,
battery status, and
required energy

Queue Up: If no spots
are available, the EV
joins the waiting line.

Occupy Spot: If a spot is
available, the EV moves
into the charging position.
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